מילון אונליין

  חיפוש ברשת      מילון      חיפוש בפורום

 

n-sphere – מילון אנגלי-עברי

לצערנו, לא נמצאו תוצאות בעברית עבור "n-sphere"
English Wikipedia - The Free Encyclopediaהורד מילון בבילון 9 למחשב שלך
N-sphere
[Image:Hypersphere coord.PNG|right|thumb|Just as a stereographic projection can project a sphere's surface to a plane, it can also project the surface of a 3-sphere into 3-space. This image shows three coordinate directions projected to 3-space: parallels (red), meridians (blue) and hypermeridians (green). Due to the conformal property of the stereographic projection, the curves intersect each other orthogonally (in the yellow points) as in 4D. All of the curves are circles: the curves that intersect <0,0,0,1> have an infinite radius (= straight line).]] In mathematics, the n-sphere is the generalization of the ordinary sphere to spaces of arbitrary dimension. For any natural number n, an n-sphere of radius r is defined as the set of points in (n + 1)-dimensional Euclidean space which are at distance r from a central point, where the radius r may be any positive real number. Thus, the n-sphere centred at the origin is defined by:
It is an n-dimensional manifold in Euclidean (n + 1)-space.

See more at Wikipedia.org...


© This article uses material from Wikipedia® and is licensed under the GNU Free Documentation License and under the Creative Commons Attribution-ShareAlike License

n-sphere – מילון אנגלי-אנגלי

English Wikipedia - The Free Encyclopediaהורד מילון בבילון 9 למחשב שלך
N-sphere
[Image:Hypersphere coord.PNG|right|thumb|Just as a stereographic projection can project a sphere's surface to a plane, it can also project the surface of a 3-sphere into 3-space. This image shows three coordinate directions projected to 3-space: parallels (red), meridians (blue) and hypermeridians (green). Due to the conformal property of the stereographic projection, the curves intersect each other orthogonally (in the yellow points) as in 4D. All of the curves are circles: the curves that intersect <0,0,0,1> have an infinite radius (= straight line).]] In mathematics, the n-sphere is the generalization of the ordinary sphere to spaces of arbitrary dimension. For any natural number n, an n-sphere of radius r is defined as the set of points in (n + 1)-dimensional Euclidean space which are at distance r from a central point, where the radius r may be any positive real number. Thus, the n-sphere centred at the origin is defined by:
It is an n-dimensional manifold in Euclidean (n + 1)-space.

See more at Wikipedia.org...


© This article uses material from Wikipedia® and is licensed under the GNU Free Documentation License and under the Creative Commons Attribution-ShareAlike License




© 2007 מילון G בבילון אונליין - נתמך ע"י מילון בבילון 9