מילון אונליין

  חיפוש ברשת      מילון      חיפוש בפורום

 

Hyperoperation – מילון אנגלי-עברי

לצערנו, לא נמצאו תוצאות בעברית עבור "Hyperoperation"
English Wikipedia - The Free Encyclopediaהורד מילון בבילון 9 למחשב שלך
Hyperoperation
In mathematics, the hyperoperation sequence is an infinite sequence of arithmetic operations (called hyperoperations) that starts with the unary operation of successor (n = 0), then continues with the binary operations of addition (n = 1), multiplication (n = 2), and exponentiation (n = 3), after which the sequence proceeds with further binary operations extending beyond exponentiation, using right-associativity. For the operations beyond exponentiation, the nth member of this sequence is named by Reuben Goodstein after the Greek prefix of n suffixed with -ation (such as tetration (n = 4), pentation (n = 5), hexation (n = 6), etc.) and can be written as using n - 2 arrows in Knuth's up-arrow notation. Each hyperoperation may be understood recursively in terms of the previous one by:
(m = 0)

See more at Wikipedia.org...


© This article uses material from Wikipedia® and is licensed under the GNU Free Documentation License and under the Creative Commons Attribution-ShareAlike License

Hyperoperation – מילון אנגלי-אנגלי

English Wikipedia - The Free Encyclopediaהורד מילון בבילון 9 למחשב שלך
Hyperoperation
In mathematics, the hyperoperation sequence is an infinite sequence of arithmetic operations (called hyperoperations) that starts with the unary operation of successor (n = 0), then continues with the binary operations of addition (n = 1), multiplication (n = 2), and exponentiation (n = 3), after which the sequence proceeds with further binary operations extending beyond exponentiation, using right-associativity. For the operations beyond exponentiation, the nth member of this sequence is named by Reuben Goodstein after the Greek prefix of n suffixed with -ation (such as tetration (n = 4), pentation (n = 5), hexation (n = 6), etc.) and can be written as using n - 2 arrows in Knuth's up-arrow notation. Each hyperoperation may be understood recursively in terms of the previous one by:
(m = 0)

See more at Wikipedia.org...


© This article uses material from Wikipedia® and is licensed under the GNU Free Documentation License and under the Creative Commons Attribution-ShareAlike License




© 2007 מילון G בבילון אונליין - נתמך ע"י מילון בבילון 9