在数学中,给定一个集合X 和在 X 上的一个等价关系 ~,则 X 中的一个元素 a 的等价类是在 X 中等价于 a 的所有元素的子集:
[a] = { x ∈ X | x ~ a }
等价类的概念有助于从已经构造了的集合构造集合。在 X 中的给定等价关系 ~ 的所有等价类的集合表示为 X / ~ 并叫做 X 除以 ~ 的商集。这种运算可以(实际上非常不正式的)被认为是输入集合除以等价关系的活动,所以名字“商”和这种记法都是模仿的除法。商集类似于除法的一个方面是如果 X 是有限的并且等价类都是等势的,则 X/~ 的序是 X 的序除以一个等价类的序的商。商集要被认为是带有所有等价点都识别出来的集合 X。
对于任何等价关系,都有从 X 到 X/~ 的一个规范投影映射 π,给出为 π(x) = [x]。这个映射总是满射的。在 X 有某种额外结构的情况下,考虑保持这个结构的等价关系。接着称这个结构是良好定义的,而商集在自然方式下继承了这个结构而成为同一个范畴的对象;从 a 到 [a] 的映射则是在这个范畴内的满态射。参见同余关系。
在数学中,给定一个集合X 和在 X 上的一个等价关系 ~,则 X 中的一个元素 a 的等价类是在 X 中等价于 a 的所有元素的子集:
[a] = { x ∈ X | x ~ a }
等价类的概念有助于从已经构造了的集合构造集合。在 X 中的给定等价关系 ~ 的所有等价类的集合表示为 X / ~ 并叫做 X 除以 ~ 的商集。这种运算可以(实际上非常不正式的)被认为是输入集合除以等价关系的活动,所以名字“商”和这种记法都是模仿的除法。商集类似于除法的一个方面是如果 X 是有限的并且等价类都是等势的,则 X/~ 的序是 X 的序除以一个等价类的序的商。商集要被认为是带有所有等价点都识别出来的集合 X。
对于任何等价关系,都有从 X 到 X/~ 的一个规范投影映射 π,给出为 π(x) = [x]。这个映射总是满射的。在 X 有某种额外结构的情况下,考虑保持这个结构的等价关系。接着称这个结构是良好定义的,而商集在自然方式下继承了这个结构而成为同一个范畴的对象;从 a 到 [a] 的映射则是在这个范畴内的满态射。参见同余关系。