מילון אונליין

  חיפוש ברשת      מילון      חיפוש בפורום

 

代数的位相幾何学 – מילון עברי-אנגלי

לצערנו, לא נמצאו תוצאות באנגלית עבור "代数的位相幾何学"
ウィキペディア日本語版 Wikipedia - フリー百科事典הורד מילון בבילון 9 למחשב שלך
代数的位相幾何学
代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。 古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポワンカレの一連の研究を契機として20世紀に発展した。 ポワンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。 多様体基本群ホモトピーホモロジーコホモロジーファイバー束などの、位相空間不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する.


Wikipedia.orgをもっと見ると…


c この記事はウィキペディアの内容を用いておりグニュー・フリー・ドキュメンテーション・ライセンス のライセンスのもとに提供されています そして テキストはクリエイティブ・コモンズ 表示-継承ライセンスの下で利用可能です

代数的位相幾何学 – מילון עברי-עברי

לצערנו, לא נמצאו תוצאות בעברית עבור "代数的位相幾何学"
ウィキペディア日本語版 Wikipedia - フリー百科事典הורד מילון בבילון 9 למחשב שלך
代数的位相幾何学
代数的位相幾何学(だいすうてきいそうきかがく、英語:algebraic topology、代数的トポロジー)は代数的手法を用いる位相幾何学の分野のことをいう。 古典的な位相幾何学は、図形として取り扱い易い多面体を扱っていたが、1900年前後のポワンカレの一連の研究を契機として20世紀に発展した。 ポワンカレは 1895年に出版した "Analysis Situs" の中で、ホモトピーおよびホモロジーの概念を導入した。これらはいまや代数的位相幾何学の大きな柱であると考えられている。 多様体基本群ホモトピーホモロジーコホモロジーファイバー束などの、位相空間不変量として代数系を対応させ、位相的性質を代数的性質に移して研究する.


Wikipedia.orgをもっと見ると…


c この記事はウィキペディアの内容を用いておりグニュー・フリー・ドキュメンテーション・ライセンス のライセンスのもとに提供されています そして テキストはクリエイティブ・コモンズ 表示-継承ライセンスの下で利用可能です




© 2007 מילון G בבילון אונליין - נתמך ע"י מילון בבילון 9