电负性综合考虑了
电离能和
电子亲合能,首先由
莱纳斯·鲍林于1932年提出。它以一组数值的相对大小表示
元素原子在分子中对成键电子的吸引能力,称为相对电负性,简称电负性。元素电负性数值越大,原子在形成
化学键时对成键电子的吸引力越强。
同一周期从左至右,有效核电荷递增,原子半径递减,对电子的吸引能力渐强,因而电负性值递增;同族元素从上到下,随着原子半径的增大,元素电负性值递减。过渡元素的电负性值无明显规律。就总体而言,周期表右上方的典型非金属元素都有较大电负性数值,
氟的电负性值数大(4.0);
周期表左下方的金属元素电负性值都较小,
铯和
钫是电负性最小的元素(0.7)。一般说来,非金属元素的电负性大于2.0,金属元素电负性小于2.0。
电负性概念还可以用来判断化合物中元素的正负化合价和
化学键的类型。电负性值较大的元素在形成化合物时,由于对成键电子吸引较强,往往表现为负化合价;而电负性值较小者表现为正化合价。在形成共价键时,共用电子对偏移向电负性较强的原子而使键带有极性,电负性差越大,键的极性越强。当化学键两端元素的电负性相差很大时(例如大于1.7)所形成的键则以离子性为主。